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Abstract

The quality of faculty scholarship and productivity is one of the primary measures for fac-
ulty evaluation in most academic institutions. Due to the diversity and interdisciplinary nature
of modern academic research fields, it is increasingly important to use journal quality lists,
with journal ratings, that offer credible measures of the worth of faculty scholarship. Despite
the existence of such metrics, journal lists, by their very nature, exclude some well-recognized
journals. Consequently, academic institutions expend inordinate resources to assess the quality
of unrated journals appropriately and equitably across disciplines. The current research pro-
poses mathematical programming models as a path to determining unknown ratings of multiple
journal quality lists, using only their known rating information. The objective of the models
is to minimize the total number of instances where two journals are rated in opposite order
by two different journal quality lists. Computational results based on journal quality list data
in https://harzing.com/ indicate that the proposed methods outperform existing imputation
algorithms with most realistic test datasets in terms of accuracy, root mean square error, and
mean absolute deviation.

1 Introduction

Academic institutions continuously strive to enhance their capacity to assess faculty productivity
and scholarship. Credible measures of scholarship performance are at the core of the research
enterprise of most institutions, and the quality of journals is one of the most crucial surrogate
measures of faculty value to institutions. Despite its importance, the journal quality evaluation
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process is debatable and somewhat contentious, in large measure due to the challenge of maintaining
objectivity and impartiality across a broad range of research disciplines and cultures.

Many studies try to address this question by analyzing citation data or surveying discipline-
specific experts. For example, Olson (Olson, 2005) and Hult et al. (Hult, Neese, & Bashaw, 1997)
surveyed faculty in operations management and marketing, respectively, to rank journals in their
field. There are also studies based on citation data analysis, such as the h-index (Moussa & Touzani,
2010) and PageRank (Cheang, Chu, Li, & Lim, 2014). However, while these studies can be useful,
their limitations offer challenges in justifying and generalizing analytical and survey results.

Given the challenges and peculiarities of schools and disciplines, many institutions have em-
braced one or more of the journal quality indices published by reliable providers. For business
schools in particular, the Australian Business Deans Council (ABDC), Association of Business
Schools (ABS), Erasmus Research Institute of Management (EJL), European Journal of Informa-
tion Systems (EJIS), and High Council for Evaluation of Research and Higher Education (HCERES)
constitute a set of the most commonly used indices across a range of institutional varieties. These
rating providers collectively yield journal quality lists. Each journal quality list defines its own rat-
ing categories and provides a list of journals with their ratings. For example, as rating providers,
ABDC categorized 2,777 journals into four categories (A*, A, B, and C) in their 2016 interim review
version and ABS used five categories (1*, 1, 2, 3, and 4) to rate 1,390 journals in the 2015 version.

While journal quality lists are used globally by many universities, there is less than full con-
fidence in the capacity of these lists to ably reflect the increasingly exacting criteria for scholarly
success. These lists are problematic, in part because they are not exhaustive and fail to satisfy the
varying demands of increasingly prevalent interdisciplinary research. For example, ABDC and ABS
are well-recognized journal quality lists for business-related disciplines. Among 731 selected jour-
nals listed by ABS in https://harzing.com/, 35 journals are not listed by ABDC. Those missing
journals span many subject areas and all rating categories. Selected disciplinary journals that are
not listed in ABDC but are listed in ABS include Mathematical Programming, SIAM Journal on
Optimization, and IEEE Transactions on Engineering Management. The omitted journals are re-
flective of the growing culture of interdisciplinary research in the academy. Without credible means
of valuing the worth of these scholarly contributions, an increasingly larger number of researchers
risk being subjected to less than satisfactory means of research evaluation.

As a partial solution to this conundrum, past research has focused on developing predictive
models to estimate the ratings of the unrated journals in a given discipline. Most such efforts aim
to recover the underlying rating formula, using known factors, such as the acceptance rate and
impact factors. In other words, the prediction for an unrated journal is dependent on the factors
that are used when the model is constructed. The efficacy of such models is based on the consensus
that those specific factors are inclusive to explain the target journal rating, which is generally not
the case.

The current research effort posits an approach highlighting a model that predicts unknown
ratings based on known ratings from multiple journal quality lists. This methodology inherently
takes into account all factors considered to determine journal ratings by selected quality lists. More
specifically, the initial rating data are constructed by aggregating certain journal quality lists as
demonstrated in Figure 1. Each column and row represents a journal quality list and a journal,
respectively. Ultimately, the goal is to fill empty cells using known entries.
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Figure 1: The header of a random portion of data provided in https://harzing.com (Harzing, 2017)

Data imputation is the task of estimating the missing entries of partially observed data. It has
been studied since the 1970s in the context of statistical inferences. While the earlier applications
of data imputation focused primarily on statistical model building with incomplete data, a variety
of interesting uses have been recognized in the last decade. For example, Netflix, Inc. held an open
competition in 2006, called the Netflix Prize Challenge (Bennett, Lanning, & etc., 2007), to predict
unknown movie ratings for films based on known customer rating data, offering a one-million-dollar
grand prize. They use these techniques to develop an intelligent movie recommender system.

Some estimation schemes using a single quality list have been applied to journal rating impu-
tation problems. These approaches aim to construct predictive models based on external factors,
such as Cabell’s acceptance rates and impact factors. Mingers and Harzing (Mingers & Harzing,
2007) used regression-based methods to impute missing values. Tse (Tse, 2001) proposed a math-
ematical programming model to estimate the coefficients of a rating prediction model. Despite the
simplicity of Tse’s model, the factors influencing ratings and their effects may vary by quality lists,
causing a fairness issue in the evaluation process. The fairness issue is in part because criteria used
for faculty scholarship may not match those of a particular quality list.

A clear example of the stark differences resulting from dissimilar criteria is evident in the journal
Basic and Applied Social Psychology. Three journal rating systems yielded very different results
for this same journal. The EJIS assigned its second-best rating out of four categories, ABS gave its
lowest rating for the same journal, and ABDC did not have the journal listed. Since these models
consider only one quality list in model building, the prediction for a particular journal is meaningful
only when there is a consensus among scholars in the journal’s disciplinary area regarding the
explanatory factors and their weights on rating determination. Furthermore, the prediction may
not be reliable if the model is not a good fit for the data, thus, decreasing predictive accuracy.

An alternative to avoid these drawbacks is to estimate the unknown ratings based on multiple
quality lists without directly using journal characteristics in the analysis. Based on the incom-
plete dataset constructed by aggregating multiple quality lists, the goal is to impute the unknown
cells in the dataset, such as the empty cells in Figure 1. When the estimation is performed based
on the sampling rating distributions, multiple imputation techniques can be applied to the prob-
lem. Multiple imputation techniques have been studied extensively over the past several decades
(Rubin, 2004; Schafer, 1999; Sterne et al., 2009). Multiple imputation accounts for uncertainty
by generating multiple, plausible values for each missing entry and pooling those values to obtain
a single outcome. It is one of the most popular imputation tools and has been integrated within
many statistical packages, including R, S-Plus, Stata, SAS, and SPSS (Van Buuren, 2012). One
example of integration is the R package mice (multiple imputation by chained equation) (Buuren
& Groothuis-Oudshoorn, 2011) that provides various multiple imputation algorithms. Although
journal characteristics are not directly reflected in the model, they are inherent in the rating in-
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formation in each quality list. Therefore, this approach indirectly considers all of the underlying
factors that affect ratings. Despite its potential merits, multiple imputation can only be applied to
data for which unknown entries are missing at random. According to Allison (Allison, 2000), data
are identified as missing at random if the probability of missing data on a particular variable Y
is dependent on other observed variables, but not on Y itself. This assumption is not applicable
for journal ratings because each rater has criteria to determine inclusion of a journal in the quality
list; hence, it is reasonable to conclude that the missing journal ratings are not random. In general,
this assumption is not satisfied for most missing data. Allison (Allison, 2017) provides specific ev-
idence satisfying this assumption. More recently, Bertsimas et al. (Bertsimas, Pawlowski, & Zhuo,
2018) used an optimization approach to impute missing data with mixed continuous and categorical
variables. The authors developed non-convex optimization models with different objective func-
tions: K-nearest neighbor, support vector machine, and optimal decision trees. They derived fast
first-order methods that obtain high-quality solutions by approximating the non-convex objective
functions.

Matrix completion is an alternative approach to completing missing data entries when all entries
are numerical. Matrix completion has been researched extensively in the optimization and computer
science communities. This approach is typically modeled as an optimization formulation for a
matrix that minimizes the rank and matches the existing known entries. Specific applications and
examples of optimization formulation and selective solution methods for matrix completion are
highlighted in (Hastie, Mazumder, Lee, & Zadeh, 2015; Candès & Recht, 2009; Candès & Tao,
2010; Jain, Netrapalli, & Sanghavi, 2013; Recht, 2011). In general, matrix completion algorithms
return fractional imputation and, in order to be used for ordered categorical data, post-processing
steps such as rounding of fractional imputed values are necessary. Despite this limitation, it is still a
useful approach, and we included a matrix completion algorithm in our computational experiment
as a benchmark.

The current paper proposes applying mixed integer programming models to impute the missing
ratings in the data. Like multiple imputation algorithms, the proposed models do not use explana-
tory factors directly in determining the ratings of each quality list but only use the known ratings
in the list. Furthermore, the models do not require a randomness assumption on the data. Unlike
traditional objectives, such as minimizing errors or maximizing likelihood, in our formulation, un-
known ratings are determined by minimizing the number of instances where two journals are rated
in reverse order by two different quality lists. This phenomenon is characterized as an upset. For
example, in a partial data display in Figure 1, the American Journal of Public Health has a higher
rating than Research Policy in EJIS 2007, but a lower rating in VHB 2015, the 2015 version of the
quality list by the Association of University Professors of Business in German-speaking countries.
Therefore, our models can be applied to a broader range of data where entries of each column are
categorized by a finite ordered set and an upset can be regarded as an unusual conflict.

Although the target problem is explicitly modeled using a mixed integer program, the challenge
is the computational complexity of solving a mixed integer program, as the solution time can be
exponential in the dimensions of the data. Thus, to counter some of these challenges, we also
consider its linear programming relaxation. Theorem 3.2 demonstrates the existence of an integral
alternate solution to the linear relaxation that enables us to directly use the solution to determine
missing ratings. Comparing current models with solutions provided by imputation algorithms
implemented in the R package mice (Buuren & Groothuis-Oudshoorn, 2011), the softImpute

(SI) algorithm in the R package softImpute (Hastie & Mazumder, 2015), and the baseline row
mean (RMean) imputation show that our optimization models outperform the benchmark methods.
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Furthermore, solution performance (accuracy, root mean square error (RMSE), and mean absolute
deviation (MAD), proportion of upsets (%Upset)) of linear relaxation is similar to that of a mixed
integer program, thus the linear relaxation model is a good alternative in practice, resolving the
issue of computation time.

The impetus for our model development for journal rating imputation emanates from problems
identified in the extant literature. One such problem is rank aggregation, which involves combining
rankings from various sources and creating a single ranking (Dwork, Kumar, Naor, & Sivakumar,
2001). Given ordered lists of multiple judges, the goal is to create a single ordered list that
reflects the evaluations of multiple judges. Studies have demonstrated the utility of mathematical
programming models for rank aggregations. Raisali et al. (Raisali, Hassanzadeh, & Milenkovic,
2013) used integer programming for weighted rank aggregation. Pedings et al. (Pedings, Langville,
& Yamamoto, 2012) used integer programming to minimize violations for rank aggregations, and
Kou et al. (Kou, Chang, Zheng, & Zha, 2010) formulated quadratic programming to aggregate
rankings from multiple sources. However, the rank aggregation problem has a different goal from
the focus of the current method. Our goal is to impute the missing ratings rather than create
a single combined ranking list. Another problem that explicates our model-building is ranking
determination in tournaments. More specifically, assume there are n players, and each one plays
against the other n − 1 players exactly once. The goal is to rank all n players based on game
results. However, it is not straightforward to create rankings for which everybody agrees. One
possible consideration is to use the concept of an upset, an instance where a low-ranked player
beats a high-ranked player. At this point, the goal is to find the ranking that minimizes the
total number of upsets. Solution methods for the minimum feedback arc set on tournaments can
be used (Kenyon-Mathieu & Schudy, 2007) to solve this problem. While the ranking problem in
tournaments aims to determine a single ranking for n players, the objective of our journal rating
imputation problem is to determine unknown ratings in multiple journal quality lists. Furthermore,
while each pair of players can be ordered in the tournament setting, two journals are not necessarily
comparable in our problem because (1) there are multiple rating providers that potentially rate
those journals, (2) some rating providers may not rate the journals, and (3) defining a comparison
rule in this structure is not straightforward. Despite the differences in their structure, we use a
similar concept of upsets to define our objective function. More specifically, we define an upset as
an instance where two journals are rated in opposite order by two rating providers and the objective
function is to minimize the sum of upsets across all journals and all rating providers.

Models developed in the current research are multifunctional, with potential applicability to
similar types of data. However, the current imputation models are not generic solutions to any
data imputation problem, since its usage is restricted to categorical data and the algorithm is not
designed for data in which upsets occur frequently. For example, in many instances of journal
rating data, the proportions of upsets are no more than 9% among all possible pairs of journals
and pairs of rating providers. For this reason, the primary focus is on imputing the missing journal
ratings in multiple journal quality lists.

How does the current research effort assist in closing some of the “gaps” associated with rating
the quality of unknown journals? Specifically, our potential contributions can be summarized as
follows:

1. We propose a mixed integer programming model to impute missing values in ordered cate-
gorical data. The model is applied to the journal rating data, yet it can also be used for other
general categorical data where an upset can be regarded as an unusual conflict.
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2. The proposed mixed integer programming model and the associated Linear Program (LP)
relaxation outperform existing multiple imputation algorithms. The mixed integer program-
ming model achieves the highest accuracy for the most realistic test datasets in the compu-
tational experiment, while the LP relaxation balances accuracy and time.

3. By applying our models to impute missing journal ratings, we provide a more reliable and
objective method to rate journals that are not listed in the ratings by the user’s preferred
and trusted rating providers.

4. From both implementation and managerial perspectives, the current research contributes to
higher levels of confidence and credibility in the journal rating process.

The remainder of the paper is organized as follows. In Section 2, the significance and criticality
of the challenges of journal ratings in faculty evaluation procedures are highlighted. In Section 3,
we present and discuss the models posited in the current paper. Section 4 presents the settings
and results of the computational experiments with our models and compares them to the results
of various other approaches.

2 Significance of the Problem: A Practical Perspective

Credible journal rating systems have considerable practical utility to an array of audiences (mar-
kets), both internal and external to the institutions. Internally, the credibility of the journal rating
system adds to the integrity of the faculty performance evaluation system. To the extent faculty
take ”ownership” of the faculty performance evaluation effort, with journal rankings being a cen-
tral plank, there is likely to be increased satisfaction with the results of the evaluation process.
Concomitantly, administrators leading faculty performance evaluation initiatives are likely to have
more confidence in the evaluation system, if there are journal rating methodologies that are trusted
and generally accepted by a large cadre of disciplinary scholars. Thus, from the perspective of
internal constituents, the proposed journal rating methodology allows users of the system to have
an additional measure of faith in the likelihood that the ratings assigned to journals adequately
and accurately reflect quality.

Externally, journal ratings offer a core group of benefits to a range of stakeholders. First,
institutional governing bodies can be more confident that quality research is a key output of the
organization. As governing boards of higher education respond to increasingly challenging inquiries
from stakeholders about the real value/cost of academic research, the proposed system of journal
ratings may engender additional confidence in the validity of rating systems as surrogate indicators
of the quality of research performance. As a comparative tool, the proposed journal rating scheme
allows assessments across time frames, institutions, and disciplines. Second, the proposed method of
rating journals offers external branding benefits. When recruiting faculty, administrators, students,
and donors, branding becomes a critical element in the decision mix. Publishing in highly ranked
journals becomes a proxy for institutional quality. As universities become increasingly research
intensive, there is even more urgency to devise tools, methods, and systems that enhance and enrich
our capacities to assess, measure, and evaluate more adroitly the value of the research/scholarly
enterprise for both internal and external constituents. In the absence of other more or less objective
criteria for performance evaluation, credible journal rankings provide a measure of organizational
distinctiveness, quality, and relevance.
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3 Model Description

This section presents a mixed integer linear program (MILP) model that finds the unknown ratings
of incomplete journal rating data obtained by combining multiple journal quality lists. The rows
and columns of the data matrix represent the journals and rating providers, respectively, and we
assume that each journal in the data is rated by at least one rating provider. Each entry of the
data is the rating for the corresponding journal rated by the corresponding rating provider. We
refer to this rating data as the combined quality list. Obviously, the data contain several missing
entries. See Harzing’s website (Harzing, 2017) to find an example of a combined quality list. By
setting the unknown entries of the data as decision variables, the optimization model aims to find
missing ratings that minimize the number of upsets, instances where two journals are conversely
rated by two different rating providers.

For clarity, the index sets and constants are defined prior to discussing the model specification.
Given a combined quality list, define

• L: the set of rating providers in the combined quality list
• N : the set of journals in the combined quality list
• Li: the set of rating providers who rate journal i ∈ N
• Nl: the set of journals rated by rating provider l ∈ L
• Cl = {1, · · · , cl}2: the set of rating scales for rating provider l ∈ L, where cl is the number of

rating categories by rating provider l ∈ L. The lower the rating scale is, the better quality
it represents. To avoid trivialities and reflect the nature of ratings in the model, we assume
that cl > 1.
• r

(l)
i ∈ Cl: the known rating of journal i ∈ Nl by rating provider l ∈ L

• N+
l = {(i, j) ∈ Nl ×Nl : r

(l)
i < r

(l)
j }: the set of pairs (i, j) of journals, where journal i has a

superior rate than journal j by rating provider l ∈ L
• N 0

l = {(i, j) ∈ Nl ×Nl : r
(l)
i = r

(l)
j }: the set of journal pairs, where journals i and j have the

same ratings by rating provider l ∈ L

Based on the notations, the (i, l)-component of the data matrix is r
(l)
i if the journal i ∈ N is rated

by l ∈ L and missing otherwise. We next introduce primary decision variables x
(l)
i , which are

(imputed) ratings of journal i by rating provider l. By adding constraints x
(l)
i = r

(l)
i for all l ∈ L

and i ∈ Nl and x
(l)
i ∈ Cl for all i ∈ N and l ∈ L, the values of the variables are consistent with

existing rating information and rating scales. We next introduce a mathematical definition of an
upset using the above information. For a fixed i < j ∈ N and l1 < l2 ∈ L, a quadruple (i, j, l1, l2)

is called an upset if (x
(l1)
i − x

(l1)
j )(x

(l2)
i − x

(l2)
j ) < 0. The inequality means that two journals i and

j are reversely rated by rating providers l1 and l2. Notice that upsets are defined only for indices
i < j ∈ N and l1 < l2 ∈ L to prevent an upset being counted more than once. We next introduce

binary variables z
(l1,l2)
ij for i < j and l1 < l2 to model upsets as follows:

z
(l1,l2)
ij =

{
1 if (i, j, l1, l2) is an upset
0 Otherwise

(3.1)

2Without loss of generality, we assume that each rating provider uses the numeric scales of the form {1, . . . , c},
where c is the number of rating categories.
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Then the objective function is ∑
i<j∈N

∑
l1<l2∈L

z
(l1,l2)
ij .

We will show later that (3.1) is implemented in our MILP formulation. To this end, we introduce
another set of auxiliary variables as follows:

z
(l)
ij =

{
1 if x

(l)
i < x

(l)
j

0 Otherwise
, (3.2)

so that (i, j, l1, l2) is an upset if and only if either z
(l1)
ij = z

(l2)
ji = 1 or z

(l2)
ij = z

(l1)
ji = 1.

We next present our MILP formulation as follows:

min
∑

i<j∈N

∑
l1<l2∈L

z
(l1,l2)
ij

s.t. z
(l1,l2)
ij ≥ z

(l1)
ij + z

(l2)
ji − 1, i < j ∈ N , l1 < l2 ∈ L, (3.3a)

z
(l1,l2)
ij ≥ z

(l2)
ij + z

(l1)
ji − 1, i < j ∈ N , l1 < l2 ∈ L, (3.3b)

z
(l)
ij ≥

1

cl − 1
(x

(l)
j − x

(l)
i ), i 6= j ∈ N , l ∈ L, (3.3c)

x
(l)
i = r

(l)
i , i ∈ Nl, l ∈ L, (3.3d)

z
(l)
ij = 1, z

(l)
ji = 0, (i, j) ∈ N+

l , (3.3e)

z
(l)
ij = z

(l)
ji = 0, (i, j) ∈ N 0

l , (3.3f)

x
(l)
i ∈ {1, . . . , cl}, i ∈ N , l ∈ L, (3.3g)

z
(l)
ij ∈ {0, 1}, i, j ∈ N , l ∈ L, (3.3h)

0 ≤ z
(l1,l2)
ij ≤ 1, i < j ∈ N , l1 < l2 ∈ L (3.3i)

Constraints (3.3a) and (3.3b) are added to implement (3.1) and the constraints (3.3c) is for
(3.2). These constraints are commonly used in linearizing product terms of binary variables. See
Theorem 3.1 for justifications of the implementations. By adding constraints (3.3d)–(3.3f), and
(3.3g), the values of decision variables are consistent with existing rating information. Constraints
(3.3g)–(3.3h) require integrality. Constraint (3.3i) is a relaxation of the original integrality con-

straint z
(l1,l2)
ij ∈ {0, 1}. The relaxation does not affect the integrality of z

(l1,l2)
ij components of

optimal solutions of (3.3), which will be demonstrated in Theorem 3.1.

We show in the following theorem that any optimal solution (x∗, z∗) to the MILP model (3.3)

satisfies (3.1), implying the integrality of (z∗)
(l1,l2)
ij .

Theorem 3.1. Let (x∗, z∗) be an optimal solution to (3.3). Then,

(z∗)
(l1,l2)
ij =

{
1 if (i, j, l1, l2) is an upset in the imputed data x∗

0 Otherwise

8
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Proof. See Appendix A for a proof.

In general, a mixed integer program is expensive to solve to optimality, depending heavily on the
numbers of integer variables and constraints in the formulation. Notice that the MILP (3.3) has
O(|N ||L|) general integer variables, O(|N |2|L|) binary integer variables, O(|N |2|L|2) continuous
variables, and O(|N |2|L|2) constraints. Thus, the problem is intractable when |N |, |L|, or the
number of missing entries are large. We can partially resolve this issue by reducing the size of the
problem without sacrificing the model characteristics. Consider two journals i1, i2 ∈ N and assume
that they are identically rated by an identical set of rating providers. In other words, the rows with

respect to i1 and i2 are identical which can be written in our notation that Li1 = Li2 and r
(l)
i1

= r
(l)
i2

for l ∈ Li1(= Li2). It is clear that if (i1, j, l1, l2) is an upset, then so is (i2, j, l1, l2). Therefore,
by retaining only one representative row amongst the clones, we still maintain the characteristics
of the previous model provided that a reasonable adjustment on the objective function is made.
The optimal ratings for the removed rows can be easily recovered by assigning the ratings of the
representative row. The total number of upsets also can be easily recovered because an upset
(i, j, l1, l2) in the optimal solution for the modified data is a representative of the set of upsets
(i′, j′, l1, l2) in the optimal solution for the original dataset where row i (resp. j) and i′ (resp. j′)
are identical. Since the number of such upsets (i′, j′, l1, l2) is the product of the number of clones
of i and j, the number of upsets in the original data corresponding to an upset (i, j, l1, l2) in the
modified data is

(# of clones of the row i)× (# of clones of the row j).

More specifically, let ui for i ∈ N be the number of journals including itself that have the same
known and missing ratings as journal i ∈ N . As we have discussed earlier, the new objective

function is simply the sum of uiujz
(l1,l2)
ij over all distinct pairs of journals (i, j) and pairs of rating

providers (l1, l2) in the modified data. To present a reduced MILP formulation, we define the
notations as follows:

• N̄ : the set of journals in the combined quality list with non-duplicate rating patterns
• N̄l: the set of journals rated by rating provider l ∈ L
• N̄+

l = {(i, j) ∈ N̄l × N̄l : r
(l)
i < r

(l)
j }: the set of journal pairs where journal i has a superior

rate than journal j by rating provider l ∈ L
• N̄ 0

l = {(i, j) ∈ N̄l × N̄l : r
(l)
i = r

(l)
j }: the set of journal pairs where journals i and j have

equivalent ratings by rating provider l ∈ L

Then, a reduced model, which we denote by MILP, is obtained by replacing N ,Nl,N+
l ,N 0

l in
(3.3) with N̄ , N̄l, N̄+

l , N̄ 0
l , respectively. See (B.1) of Appendix B for the full description of MILP.

Compared to (3.3), MILP has a significantly reduced number of variables and constraints. If
there are 20% duplicate rows in N , which implies |N̄ | ≈ 0.8|N |, then the numbers of variables and
constraints of MILP are approximately 64% of (3.3).

Nevertheless, the numbers of variables and constraints still increase quadratically as the number
of non-duplicate journals |N̄ | or rating providers |L| increases. Furthermore, a mixed integer
program is not solvable in polynomial time unless P = NP. We observed from our computational
experience with small test data (412 journals and 7 rating providers) that MILP have several
million variables and constraints and it took several hours to solve it to optimality. For this reason,

we consider the LP relaxation of MILP by relaxing the integrality constraints x
(l)
i ∈ {1, . . . , cl}

and z
(l)
ij ∈ {0, 1} with their continuous relaxations 1 ≤ x

(l)
i ≤ cl and 0 ≤ z

(l)
ij ≤ 1, respectively. We

denote the resulting formulation by LP. See (B.2) of Appendix B for the full description of LP.
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Although LP can be solved much faster than MILP, the optimal solution of a linear program
is fractional in general, causing a rounding issue when converting a fractional rating to an integral
rating that matches one of the rating scales used by the corresponding rating provider. Throughout
our computational experiments, we observe that the optimal solution of LP has integer values for xll
components of optimal solutions, while the values of zlij and zl1,l2ij at optimal solutions are fractional.
It is also observed that, in many test datasets, optimal journal ratings obtained by LP formulation
show similar performance as to those by MILP formulation.

Remark 1. The construction of multiple imputation algorithms is based on the missing at random
(MAR) assumption, and it is required to obtain unbiased estimators for missing entries. There-
fore, the application of multiple imputation algorithms for data that does not satisfy the MAR
assumption results in lack of statistical justifications on the imputation, and thus the imputation is
unreliable. On the other hand, our models do not require this assumption because the models are
not based on theoretical distributions of entries given existing rating information. Our models are
deterministic optimization models that impute missing ratings by penalizing occurrences of upsets.
Therefore, although the models use certain information about the existing ratings, the imputation
does not require the knowledge of the distribution and the randomness assumption.

In the remainder of the section, we prove the existence of an optimal solution whose rating
components are integral.

Theorem 3.2. There exists an optimal solution to LP whose x
(l)
i , l ∈ L, i ∈ N components are

integral.

Proof. See Appendix A for a proof.

4 Computational Experiments

In this section, we present computational experiments on the journal rating data to show the
performance of our models compared with benchmark algorithms. The code of the proposed algo-
rithms and the data files used in the experiment are available in the online supplement. We use
the 60th edition of the journal rating data from https://harzing.com/ (Harzing, 2017) published
on September 14, 2017. It is a combined quality list of 13 rating providers and 914 journals. We
exclude one of the rating providers, EJL 2016, because the rating categories are not comparable.
The resulting data with 13 remaining rating providers has 11,882 total entries, with 4,660 missing
entries. Figure 2 presents the summary statistics of the original data. Figure 2(a) shows pro-
portions of the journals evaluated by each rating provider that range from 35.8% (WIE 2008) to
96.2% (DEN 2017). Figure 2(b) illustrates how many journals are rated and by how many rating
providers. For example, the last bar indicates that 96 journals are rated by all 13 rating providers,
and the first bar shows that there are four journals rated by only one rating provider. We observe
from the figure that each journal is rated by at least one rating provider, satisfying the assumption
that the incomplete data have no empty rows.

We use two different approaches to generate test datasets. In the first approach, (1) we extracted
submatrices of the original data matrix that do not contain any missing entries. This submatrix is
referred to as a complete submatrix. We use MILP formulations to obtain three complete subdata.
See Appendix C for a more detailed description of the MILP formulations and their derivation.
(2) For each complete subdata, we generate several test datasets by artificially removing randomly
chosen entries with various missing rates to observe performances in different missing scenarios.
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In the second approach, we aim to maintain all the journals and rating providers of the original
Harzing’s dataset when we generate the test datasets. Similarly to 10-fold cross validation, we
artificially remove 10% of the non-missing entries across all rating providers to generate a test
dataset. The only difference from the original 10-fold cross validation is that the 10 sets of removed
entries do not partition the original non-missing entries. That is, we allow the subsets to intersect.
We adopted this setting because some journals are rated by a few rating providers; hence, some
of the test datasets may include a journal that is not rated by any rating providers when classic
10-fold cross validation is applied, violating the assumption of our models. The detailed procedure
of generating test datasets is presented in Section 4.1. Using the generated test datasets, we run
our models (MILP and LP) and the ordered multiple imputation methods (polr, pmm, sample,
and cart) under the R package mice as well as SI, a state-of-the-art matrix completion method in
the R package softImpute, and a baseline approach RMean to impute the missing ratings. See the
reference manuals (Buuren & Groothuis-Oudshoorn, 2011) and (Hastie & Mazumder, 2015) of the
R packages mice and softImpute for more details about the benchmark imputation algorithms.
The RMean first scales the ratings into [0, 1] by dividing the ratings of a column by the maximum
rating category. Then, it simply imputes the missing entries of a certain row by the average of the
non-missing entries in the row.

To compare the quality of imputation methods, we use accuracy, RMSE, MAD, percentage of
upsets (%Upset), and running time as performance measures. The definitions of the measures are
introduced in Section 4.4.
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Figure 2: Summary statistics of the original data

4.1 Synthetic Datasets

To systematically evaluate the performance of various imputation models, we generate test datasets
from Harzing’s combined quality list. We adopted two different approaches to data generation: (1)
deleting entries from complete submatrices and (2) deleting entries from the original data.

4.1.1 Extraction from complete submatrices

In the first approach, we generate three submatrices of the Harzing’s combined quality list that
contain no missing values. We assume the ratings of each rating provider of a complete submatrix
span all the rating categories of the rating provider. For example, suppose ABDC 2015 is a rating
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provider in a complete submatrix. Then, since four rating categories {A∗, A,B,C} are used in
Harzing’s original data, the set of ratings of ABDC 2015 in complete submatrices must be identical
to {A∗, A,B,C}. The first complete data matrix is obtained by solving MILP (C.1) in Appendix
C. The resulting submatrix consists of ratings of 412 journals rated by seven rating providers
(EJIS 2007, EJISCI 2007, ABS 2015, ABDC 2016, CNRS 2017, DEN 2017, and HCERES 2017).
We next extract another complete submatrix that contains no upsets to test how our models can
perform at their best. It is obtained by solving (C.1) with additional constraints (C.2). Since
the solver (CPLEX 12.7.1) failed to solve the MILP with all 14 rating providers due to a memory
issue, alternatively, we extracted a zero-upset matrix from the first complete data. The resulting
submatrix has 155 journals and four rating providers (EJIS 2007, EJISCI 2007, ABS 2015, and
ABDC 2016). We next extract another complete submatrix that contains many upsets to see the
worst-case scenarios of our models. The dataset is generated by giving different weights to each
cell and by solving a weighted version of MILP (C.1). The weight for journal i and rating provider
l is defined as max{1, the number of upsets caused by ril}. In the weighted version, journals and
rating providers with larger weight sums are more likely to be selected. The resulting submatrix
has 220 journals and four rating providers (EJIS 2007, EJISCI 2007, ABDC 2016, and DEN 2017).
See Table 1 for a summary profile of the three complete datasets. Note that the numbers in the last
column are the proportions of upsets out of all possible combinations (i, j, l1, l2) ∈ N ×N ×L×L
such that i < j and l1 < l2, calculated in percentage.

(Proportion of upsets (%)) =
(# upsets)

|N |(|N |−1)
2

|L|(|L|−1)
2

× 100 (4.1)

# journals
(|N |)

# rating providers
(|L|) # upsets

Proportion
of upsets (%)

Complete matrix A 412 7 76799 4.31 %
Complete matrix B 208 4 0 0.00 %
Complete matrix C 220 4 14522 8.66 %

Table 1: Complete Datasets

We next artificially remove randomly selected entries from the complete datasets. Four classes of
the datasets are generated using different removal schemes.

• Class 1 datasets are generated based on complete matrix A in Table 1. To imitate the
characteristics of the original data (with 914 journals and 13 rating providers), we remove
entries of columns using the same missing rates of the corresponding rating providers in the
original dataset. Those missing rates are listed in Table 2. The overall missing rate is 22.47%.
A total of 10 test datasets are generated.

EJIS 2007 EJISCI 2007 ABS 2015 ABDC 2016 CNRS 2017 DEN 2017 HCERES 2017
Missing rates 21.99% 20.90% 20.02% 9.08% 41.68% 3.83% 40.70%

Table 2: Missing rates for Class 1 datasets

• Class 2 datasets are generated based on complete matrix A in Table 1 using various missing
rates. Each removed dataset is generated by applying a uniform missing rate across all rating
providers. Ten such datasets are obtained using ten missing rates 5%, 10%, . . . , 50%.
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• Class 3 datasets are generated based on complete matrix B in Table 1. The missing rates of
the corresponding rating providers of the original data are used, which are 20.02%, 9.08%,
41.68%, and 40.70%. A total of 10 test datasets are generated.

• Class 4 datasets are generated based on complete matrix C in Table 1. The missing rates of
the corresponding rating providers of the original data are used, which are 21.99%, 20.90%,
9.08%, and 3.83%. A total of 10 test datasets are generated.

Table 3 shows basic characteristics of the generated synthetic datasets. For each class, 10
datasets were generated and labeled with three-digit numbers (IDs), where the first digit represents
class and the following two digits identify the dataset. After the random removal process, we further
reduce the size of the datasets by deleting duplicate rows, except for one representative row, as we
described earlier in the construction of the reduced MILP. The last column of each class in Table
3, ndup represents the number of duplicate rows in the dataset (except the representatives), which
can be calculated by ndup = |N |− |N̄ |. We observe from datasets in Class 2 that ndup decreases as
the missing rate increases, making the problem size larger.

Class 1 Class 2 Class 3 Class 4
ID |N | |L| %miss ndup ID |N | |L| %miss ndup ID |N | |L| %miss ndup ID |N | |L| %miss ndup

101 412 7 22.47% 61 201 412 7 5.10% 189 301 208 4 27.87% 122 401 220 4 13.86% 125
102 412 7 22.47% 70 202 412 7 9.95% 118 302 208 4 27.87% 121 402 220 4 13.86% 125
103 412 7 22.47% 79 203 412 7 15.05% 94 303 208 4 27.87% 121 403 220 4 13.86% 127
104 412 7 22.47% 71 204 412 7 19.90% 69 304 208 4 27.87% 124 404 220 4 13.86% 124
105 412 7 22.47% 77 205 412 7 25.00% 46 305 208 4 27.87% 122 405 220 4 13.86% 128
106 412 7 22.47% 76 206 412 7 30.10% 39 306 208 4 27.87% 122 406 220 4 13.86% 119
107 412 7 22.47% 65 207 412 7 34.95% 27 307 208 4 27.87% 123 407 220 4 13.86% 126
108 412 7 22.47% 70 208 412 7 40.05% 37 308 208 4 27.87% 125 408 220 4 13.86% 121
109 412 7 22.47% 82 209 412 7 44.90% 41 309 208 4 27.87% 119 409 220 4 13.86% 121
110 412 7 22.47% 66 210 412 7 50.00% 41 310 208 4 27.87% 120 410 220 4 13.86% 124

Table 3: Synthetic datasets: Class 1 has missing rates similar to the raw data, Class 2 has increasing
missing rates, Class 3 contains no-upset datasets, Class 4 contains more-upset datasets

4.1.2 Extraction by deleting randomly chosen known ratings from the original data

In the second approach, we aim to generate test datasets that include all the journals and rating
providers in Harzing’s original combined quality list. Ten test datasets are generated by removing
10% of the randomly chosen non-missing entries, which is similar to 10-fold cross validation. Notice
that each journal of a test dataset must be rated by at least one rating provider. Since there are only
13 rating providers in Harzing’s data, several journals are rated by nine or fewer rating providers,
making the classic 10-fold cross validation infeasible because of the assumption that each journal
must be rated by at least one rating provider. Therefore, we consider a variant of 10-fold cross
validation by allowing ten subsets of non-missing entries to intersect. We categorize the resulting
datasets as Class 5. The overall missing rate of each of the Class 5 datasets is 45.3%, while that of
the original data is 39.2%.

4.2 Benchmark Methods

Among various algorithms and models in the literature, we chose four categorical imputation algo-
rithms, polr, pmm, sample, and cart, in the R package mice as benchmarks. In the pilot compu-
tational study, these four algorithms exhibited better performance than other categorical multiple
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imputation algorithms in relationship to our journal rating datasets. Each of the benchmark algo-
rithms in the mice package (Buuren & Groothuis-Oudshoorn, 2011) requires setting parameter m
that indicates the number of imputations before pooling them into one dataset. Although it is rec-
ommended in (Buuren & Groothuis-Oudshoorn, 2011) to use m ∈ {10, . . . , 20}, the current study
chose m = 5 because of observations resulting from the computational pilot study, that indicated
no significant quality improvement in the imputed ratings when larger values of the parameter
(m = 10 or 15) are used versus the algorithms with m = 5.

Test datasets were also tested using SI, a matrix completion algorithm (Mazumder, Hastie, &
Tibshirani, 2010), implemented in the R package softImpute (Hastie & Mazumder, 2015). Since
the imputed values with SI are fractional, we round the imputed values to obtain integral ratings so
that the experiment results are comparable with those from other methods. We denote the method
by SI in the experiment results presented in Figures 3 through 6.

We repeat the experiments with RMean, another simple imputation method. For each column,
RMean first scales each rating r in the column using the formula r−1

c−1 , where c is the number of

categories so that the known ratings 1, 2, 3, . . . , c are transformed to 0, 1
c−1 ,

2
c−1 , . . . , 1. Then, for

each row, it replaces the missing entries of the row with the average of the non-missing entires of
the same row. MS Excel is used to implement RMean; hence, we do not report the running time for
experiments with RMean because its computational efficiency is obvious.

4.3 Experiment Setting

Then, MILP and LP are implemented in C# and solved by CPLEX 12.7.1. Four multiple impu-
tation benchmark methods (polr, pmm, sample, and cart) in the R package mice and a matrix
completion algorithm, SI, in the R package softImpute are tested in R 3.4.3 to compare the per-
formance. For all experiments, a personal computer with 8 GB RAM and Intel Core i7 (2.40 GHz
dual-core) is used.

For MILP, we run CPLEX for up to three hours. If CPLEX does not terminate within
three hours, then we adopt the current best solution at termination as a proxy for the optimal
solution. Additionally, the CPLEX optimality gap (in percentages) is reported to demonstrate
solution quality with respect to optimality for the original objective function.

4.4 Performance Measures

To compare the performance of algorithms, five performance measures are considered: (1) accuracy,
(2) RMSE, (3) MAD, (4) proportion of upsets (%Upsets), and (5) running time (in seconds). Let
nmiss be the number of artificially removed entries in each synthetic dataset. In other words, for
Class 1, 2, 3, and 4 datasets, nmiss equals the number of missing entries of each test dataset, while
for Class 5 datasets, it equals the number of the 10% removed entries. Notice that the complete
submatrices summarized in Table 1 have no missing entries. Recall that the rating of journal i by

rating provider l in the complete dataset is denoted by r
(l)
i and the corresponding entry in each

synthetic dataset is denoted by x
(l)
i .

1. Accuracy (%): It measures how much portion of missing entries are correctly imputed. In
our notations,

(Accuracy) =

∑
l∈L
∑

i∈N\Nl
1
x
(l)
i =r

(l)
i

nmiss
× 100,
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where 1
x
(l)
i =r

(l)
i

= 1 if x
(l)
i = r

(l)
i and 0 otherwise.

2. RMSE: root mean square error

(RMSE) =

√∑
l∈L
∑

i∈N\Nl

(
x
(l)
i − r

(l)
i

)2
nmiss

3. MAD: mean absolute deviation

(MAD) =

∑
l∈L
∑

i∈N\Nl

∣∣x(l)i − r
(l)
i

∣∣
nmiss

4. %Upsets: The proportion of upsets as defined in (4.1)

5. Time: running time in seconds

4.5 Experiment Results

Overall, our models MILP and LP outperform the benchmark algorithms on most datasets. The
results are compared using column graphs in Figures 3, 5, and 6 for Classes 1, 3, and 4, respectively.
Each figure contains five plots, comparing the methods using the five performance measures. In
all plots, the average values of the ten datasets are presented, and the horizontal and vertical axes
represent the methods and performance measures, respectively. For the results of Class 2 datasets
presented in Figure 4, the actual values of the performance measures are presented instead of the
averages. The actual values are presented because the missing rates of the ten datasets are different,
and we observed some trends as the missing rates increase. The trends are captured in the series
plots in Figure 4 to compare the four best-performing algorithms, cart, SI, MILP, and LP, where
the horizontal axis represents the missing rates.

In Figure 3, the result for Class 1 datasets, which we constructed to see the performances in
a reasonably realistic setup, are presented. Figures 3(a) through 3(c) show that MILP and LP
outperform all benchmarks in accuracy, RMSE, MAD, and %Upsets. In addition, MILP and LP
have at least 7.5% higher accuracy than the second-best algorithm, and this difference is significant.
Between MILP and LP, there is no significant difference in the four performance measures, while
Figure 3(e) shows that MILP is much slower than LP. Among the benchmark algorithms, RMean,
SI, and cart show competitive performances; accuracy, RMSE, and MAD are reasonably good,
and the running times are not the slowest. Especially, RMean and SI returned the imputation result
very quickly, while the other algorithms used up to several thousand seconds of time. Because our
MILP and LP directly optimize the number of upsets, the two models have the smallest %Upsets.
For all other benchmark algorithms, %Upsets values are closely related to accuracy, RMSE, and
MAD, which supports our objective function choice of upset minimization.
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Figure 3: Average performance for Class 1 datasets

We summarize the experiment results for Class 2 datasets in Figure 4 to present some trends as
missing rates increase. Our models outperform the benchmark methods when the missing rates are
30% or more, while SI performs better than the current models when the missing rates are 25% or
less. In terms of running times, MILP used a significant amount of time when the missing rates
were large, while LP solves them in a reasonable time period. For datasets with higher missing
rates, MILP does not terminate with optimality. However, the returned solutions with MILP
outperform LP in terms of imputation quality (accuracy, RMSE, MAD, and %Upsets). We further
observe that our models show relatively stable performance across various missing rates.
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Figure 4: Performance of three algorithms for Class 2 datasets

In Figure 5, the results for Class 3 datasets, which we constructed to check the best performances
of our models, are presented. For all performance measures except for time, MILP and LP
significantly outperform other benchmark methods. The MILP and LP approaches have at least
a 12.0% higher accuracy than the second-best algorithm, which is a significant difference. Between
MILP and LP, there are no significant differences across all five performance measures. Since
Class 3 datasets are small-sized (208 journals with four rating providers), both MILP and LP
return the results within a second. Among the benchmark algorithms, cart shows competitive
performance in terms of accuracy, RMSE, and MAD, and the running times are not the slowest.
Unlike the results for Classes 1 and 2, RMean has a lower accuracy than the competitors.

17



www.manaraa.com

41.6%

41.9%

33.6%

35.5%
39.7%

56.2%

68.2%
68.3%

0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy
 (

%
)

(a) Accuracy (%)

0.86

1.51
1.43

1.26
1.13

0.87

0.63 0.63

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
M

S
E

(b) RMSE

0.63

1.03 1.06

0.92

0.80

0.54

0.35 0.35

0

0.2

0.4

0.6

0.8

1

1.2

M
A

D

(c) MAD

1.5%

3.3%

7.4%

4.5%
4.9%

2.2%

0.0%0.0%
0%

2%

4%

6%

8%

U
p

se
t 

(%
)

(d) Upset (%)

0.0 0.0

8.5
7.8

10.2

0.6
0.0

0

5

10

15

T
im

e 
(s

ec
o

n
d

s)

≈ 93.6

(e) Time

Figure 5: Average performance for Class 3 datasets

Figure 6 shows the results for Class 4 datasets, which have many upsets. As expected, the
predictive qualities of MILP and LP are not as good as those for other test datasets, although
both models still provide the best %Upset result. Note that complete matrix C, which was used
to generate Class 4 datasets, has 8.66% upset rates, and our models provide solutions with a lower
%Upset. This indicates that the current model may not be the best when the original data have
many upsets. For this class of datasets, SI outperforms the others in terms of accuracy and MAD.
For RMSE, the SI, RMean, MILP, and LP algorithms show similar performances. Overall, MILP
and LP are in the second-best group with RMean and perform better than the mice methods. On
the other hand, SI has higher absolute residuals for inaccurately imputed entries than our models.
Thus, when the volatility of inaccuracies is one of the key decision criteria, decision-makers may
prefer the current models over SI.

For Class 5 datasets, which we obtained by deleting the existing ratings in the original data,
CPLEX fails to solve both MILP and LP within the three-hour time limit. Recall that each dataset
includes all 914 journals and 13 rating providers with 5,382 missing entries (missing rate: 45.3%).
To resolve this issue, rather than imputing the entire dataset, we (1) partition the set of journals
into two subsets, (2) impute the two subdata using LP, and (3) combine the quality list. This
setting allows LP to find an optimal solution within an hour. Since we observed that SI and RMean

outperform all other benchmark algorithms from the previous computational results, we present
computational results for only LP and SI. For a fair comparison, we applied SI for original test
datasets and partitioned datasets. Since the imputation by RMean is not affected by partitioning,
we applied RMean only to the original test datasets. See Table 4 for the summary results. First, we
observe that when we use SI, there is no considerable difference between imputation on the original
data and that on the partitioned data. In addition, LP shows significantly better performance in
terms of accuracy, RMSE, and MAD, while it is still computationally expensive.
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Figure 6: Average performance for Class 4 datasets

SI SI (partitioned) RMean LP (partitioned)

Accuracy (%) 54.9% 54.7% 53.31% 63.3%
RMSE 0.87 0.88 0.8060 0.71
MAD 0.44 0.45 0.5205 0.41

Upset (%) 5.5% 6.2% 3.90% 2.0%
Time (sec) 0.06 0.05 NA 3022.89

Table 4: Summary results on Class 5 datasets

We next summarize the results of the computational experiments and offer some thoughts and
observations regarding the practical utility of the research findings.

• In Class 1 experiments, MILP and/or LP significantly outperform the benchmark methods
in terms of accuracy, RMSE, MAD, and %Upsets. Class 1 datasets are constructed using the
same missing rates of the rating providers as those in Harzing’s original combined list. Our
models may be preferable in this more realistic scenario.

• The MILP algorithm encountered computational challenges in Class 5 experiments where
the test datasets include all 914 journals and 13 rating providers, and the missing rate is
45.3%. However, LP was solvable after partitioning the data, and it performed significantly
better than SI, which is the best-performing benchmark method.

• When the data, by its nature, has a small number of upsets, our models perform exceptionally
better than benchmark methods as we observed in Class 3 experiments.

• In Class 2 experiments, MILP and LP showed particularly good performance unless the
missing rates are 25% or less, while SI performed best when missing rates are low.
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• Even in the worst-case scenario highlighted in Class 4 experiments, MILP and LP show
competitive results in terms of RMSE, MAD, and %Upset. Our models were better than all
mice methods. In these experiments, SI performed best.

• No significant differences in performance were observed between MILP and LP except for
running times. When decision-makers are presented with a large problem size, MILP is
computationally expensive, thereby rendering more promise to LP in practice.

5 Conclusions

Estimating missing journal ratings in a quality list is an important issue in evaluating scholarship
of faculty in tenure and promotion procedures in most academic institutions. We proposed a mixed
integer programming model to impute missing ratings in the aggregated data of multiple quality
lists. This was done without directly using the explanatory factors of each quality list nor making
randomness assumptions that hinders the use of well-known multiple imputation algorithms. Com-
putational results show that our models outperform the existing multiple imputation algorithms in
terms of prediction accuracy, RMSE, MAD, and elapsed time. We suggest that the linear program
constructed by relaxing the integrality constraints in the original mixed integer program is an effi-
cient and reasonably effective method to determine the unknown ratings for problems that MILP
cannot handle.

Finally, we leave further comments regarding the practical usage of our models.

• Our models can be applicable to data with similar structure with journal rating data, in which
an upset can be regarded as an “unusual” conflict. In other words, the features (or rating
providers) of the data must be coherent. In other words, our models are not suitable for rating
data in which rating providers have considerably different rating criteria. For this reason, it is
important to carefully select rating providers to take advantage of our models. Therefore, we
suggest researchers or practitioners use discretion in checking whether the target data have
the inherent property. Calculating %Upsets with non-missing quadruples (i, j, l1, l2) may be
an alternative. For Harzing’s original combined list, 3.27% of all non-missing quadruples are
upsets.

• Practitioners may want to use a certain subset of journals in the analysis. For example, we
extracted a complete submatrix within the operations research/management sciences subject
area and observed that the proportion of upsets is only 1.78%, which is smaller than the
proportion of 2.52% for complete matrix A. Similarly, selecting a subset of the rating providers
may help improve the quality of our models.

• The MILP algorithm is a good alternative for imputation of journal rating data provided
that it is solvable and the missing rates are not low. With rating data with a small missing
rate, SI may be preferable. When MILP is too expensive to solve (when either the problem
size or missing rate is large), LP is a strong alternative because it is much faster than MILP
and still performs very well.
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